Autocatalysis in Reaction Networks
نویسندگان
چکیده
The persistence conjecture is a long-standing open problem in chemical reaction network theory. It concerns the behavior of solutions to coupled ODE systems that arise from applying mass-action kinetics to a network of chemical reactions. The idea is that if all reactions are reversible in a weak sense, then no species can go extinct. A notion that has been found useful in thinking about persistence is that of "critical siphon." We explore the combinatorics of critical siphons, with a view toward the persistence conjecture. We introduce the notions of "drainable" and "self-replicable" (or autocatalytic) siphons. We show that: Every minimal critical siphon is either drainable or self-replicable; reaction networks without drainable siphons are persistent; and nonautocatalytic weakly reversible networks are persistent. Our results clarify that the difficulties in proving the persistence conjecture are essentially due to competition between drainable and self-replicable siphons.
منابع مشابه
Complete characterization by multistationarity of fully open networks with one non-flow reaction
This article characterizes certain small multistationary chemical reaction networks. We consider the set of fully open networks, those for which all chemical species participate in inflow and outflow, containing one non-flow (reversible or irreversible) reaction. We show that such a network admits multiple positive mass-action steady states if and only if the stoichiometric coefficients in the ...
متن کاملComplete homochirality induced by the nonlinear autocatalysis and recycling
A nonlinear autocatalysis of a chiral substance is shown to achieve homochirality in a closed system, if the back-reaction is included. Asymmetry in the concentration of two enantiomers or the enantiometric excess increases due to the nonlinear autocatalysis. Furthermore, when the backreaction is taken into account, the reactant supplied by the decomposition of the enantiomers is recycled to pr...
متن کاملChiral symmetry breaking in a microscopic model with asymmetric autocatalysis and inhibition.
Asymmetric autocatalysis and inhibition have been proposed as key processes in the spontaneous emergence of chiral symmetry breaking in a prebiotic world. An elementary lattice model is formulated to simulate the kinetics of chiral symmetry breaking via autocatalysis and inhibition in a mixture of prochiral reactants, chiral products, and inert solvent. Starting from a chirally unbiased initial...
متن کاملAn Intermediate Level of Abstraction for Computational Systems Chemistry
Computational techniques are required for narrowing down the vast space of possibilities to plausible prebiotic scenarios, because precise information on the molecular composition, the dominant reaction chemistry and the conditions for that era are scarce. The exploration of large chemical reaction networks is a central aspect in this endeavour. While quantum chemical methods can accurately pre...
متن کاملNatural Abundance Isotopic Chirality in the Reagents of the Soai Reaction
Isotopic chirality influences sensitively the enantiomeric outcome of the Soai asymmetric autocatalysis. Therefore magnitude and eventual effects of isotopic chirality caused by natural abundance isotopic substitution (H, C, O, Zn) in the reagents of the Soai reaction were analyzed by combinatorics and probability calculations. Expectable enantiomeric excesses were calculated by the Pars–Mills ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Bulletin of mathematical biology
دوره 76 10 شماره
صفحات -
تاریخ انتشار 2014